-
Рентгеновский контроль
-
Ультразвуковой контроль
-
Приборы визуального контроля
-
Капиллярный контроль
-
Газосварочное оборудование
-
Магнитный контроль
-
Сварочные материалы
-
Монтаж трубопровода
-
Средства защиты, аксессуары
-
Приспособления
-
Паяльное оборудование
-
Опрессовочное оборудование
-
Радиоизмерительные приборы
-
Дефектоскопы
-
Радиационный контроль
-
Кабели соединительные для преобразователей
-
Промышленные установки
-
Литература
-
Принадлежности для приборов контроля
-
Контроль характеристик
-
Измерители параметров окружающей среды
-
Геодезическое оборудование
-
Электроизмерительные приборы
-
Тесты пищевые
-
Сварочное оборудование
- Анализаторы спектра, цепей и электромагнитного поля
- Измерители нелинейных искажений
- Антисептики для дерева
- Вольтамперфазометры
-
Обслуживание телекоммуникационных сетей
- УФ светильники
- Приборы для диагностики автомобилей
-
Магнитопорошковый контроль
-
Вихретоковый контроль
-
Электрический контроль
-
Приборы теплового контроля
-
Контроль герметичности
-
Контроль качества строительных материалов
-
Контроль твердости
-
Контроль качества покрытий
-
Дозиметры и радиометры
-
Люксметры
- Профилометры
-
Рентгеновские аппараты
-
Толщиномеры
- Шаблоны сварщика
-
Тепловизоры
-
Адгезиметры
-
Лабораторное оборудование
-
Испытательные машины
-
Поиск подземных коммуникаций
Токоизмерительные клещи
Токоизмерительные клещи (токовые клещи) — приборы для измерения тока без разрыва цепи, в которой измеряется ток и без электрического контакта с ней. Принцип действия таких клещей основан на измерении магнитного поля, порождаемого измеряемым током.
Классические токовые клещи, часто называемые клещи Дитце, позволяют измерять только переменный ток и представляют собой по сути трансформатор тока с разъёмным тороидальным или близким по форме к тороидальному ферромагнитным сердечником, окно которого при измерении охватывает провод с током. Такие клещи реагируют не на сам ток, а на скорость его изменения — производную тока по времени.
Принцип действия токовых клещей
Принцип работы современных токовых клещей основан на прямом измерении магнитного поля, порождаемого током в проводнике вокруг проводника с помощью датчика Холла и позволяют измерять ток произвольной формы, в том числе и постоянный ток.
Клещи на основе трансформатора тока
Принцип действия токоизмерительных клещей — трансформаторов тока основан на том, что ток, протекающий в проводе создаёт вихревое магнитное поле, силовые линии которого окружают проводник. На разъёмном для возможности ввода проводника в окно магнитопровода, изготовленного из магнитомягкого ферромагнитного материала намотана вторичная обмотка, подключённая ко вторичному электроизмерительному прибору, шкала которого проградуирована в единицах тока. Таким образом, этот трансформатор тока имеет две обмотки, первичная — один виток это провод с измеряемым током и многовитковую вторичную обмотку.
В соответствии с законом электромагнитной индукции Фарадея во вторичной обмотке наводится ЭДС, величина которой прямо пропорциональна скорости изменения магнитного потока, охватываемого вторичной обмоткой. Трансформатор тока применяется в режиме, близком к короткому замыканию выходной обмотки, наводимый во вторичной цепи ток размагничивает магнитопровод до уровня магнитного потока, вызывающего во вторичной цепи ЭДС, равный сумме падений напряжения при токе вторичной цепи. В идеальном случае при нулевом сопротивлении цепи, ток вторичной обмотки строго пропорционален току первичной цепи (с коэффициентом пропорциональности, равным соотношению числа витков на магнитопроводе), а в реальном случае при низком сопротивлении достаточно близок к идеальному. Таким образом, по измерениям тока вторичной цепи косвенно измеряют и ток первичной.
Такие клещи применяются обычно для измерения токов промышленной частоты, частота которой отклоняется незначительно от номинальной (50 или 60 Гц), и форма тока близка к синусоидальной, с достаточной для практических измерений точностью можно считать, что среднеквадратическое значение измерительного тока прямо пропорционально действующему значению измеряемого тока.
Клещи с датчиком Холла
Магнитопровод таких клещей не отличается по конструкции от такового у клещей со вторичной обмоткой, но в размыкаемом зазоре магнитопровода помещают датчик Холла. Первичный ток порождает магнитное поле в магнитопроводе, величина которого прямо пропорциональна току, а не производной тока, как у трансформаторных клещей. Так как ЭДС датчика Холла прямо пропорциональна полю, то по измерениям ЭДС Холла можно косвенно измерить ток в проводе, причём форма тока не имеет значения, например, прямоугольный, произвольной формы или постоянный. Так как ЭДС Холла меняет знак при изменении направления поля, такое устройство позволяет измерить не только величину, но и направление измеряемого тока. В некоторых моделях таких клещей предусмотрена возможность подключения дополнительного датчика тока — пояса Роговского, что позволяет измерять большие переменные токи (до 3000А) на проводниках крупного сечения, например, на шинах распределительных устройств.
Преимущества токоизмерительных клещей
- Измерение тока без разрыва контролируемой цепи.
- Возможность простого измерения в цепях с напряжением до 10 кВ.
- Возможность измерять ток очень большой силы, что физически неосуществимо для амперметров прямого включения (непосредственно в разрыв цепи).
- Компактность прибора.
Недостатки токовых клещей
- Невысокий класс точности (обычно 2,0 — 3,0; у стрелочных моделей — до 4.0).
- Некоторая зависимость показаний от положения токонесущего проводника в окне магнитопровода клещей.
- Искажение показаний в недорогих моделях от присутствия в измеряемом токе высших гармоник и от изменения частоты измеряемого тока — прибор даёт правильные показания только при синусоидальном измеряемом токе (одна из причин этого — применение в качестве измерителя магнитоэлектрической системы с выпрямлением). В современных электронных приборах этот недостаток компенсируется схемным либо программным способом.